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Abstract

We present a technique for automatically synthesizing walking and
running controllers for physically-simulated 3D humanoid charac-
ters. The sagittal hip, knee, and ankle degrees-of-freedom are ac-
tuated using a set of eight Hill-type musculotendon models in each
leg, with biologically-motivated control laws. The parameters of
these control laws are set by an optimization procedure that satis-
fies a number of locomotion task terms while minimizing a biolog-
ical model of metabolic energy expenditure. We show that the use
of biologically-based actuators and objectives measurably increases
the realism of gaits generated by locomotion controllers that operate
without the use of motion capture data, and that metabolic energy
expenditure provides a simple and unifying measurement of effort
that can be used for both walking and running control optimization.
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1 Introduction

The development of physics-based locomotion controllers de novo,
independent from stock motion data, has been a long-standing ob-
jective in computer graphics research and has seen resurgence in
recent years. Despite impressive progress, the gaits produced by
existing controllers fall short of the natural appearance of human
locomotion. For example, physics-based walking controllers that
do not rely on motion capture data commonly produce walking mo-
tion with exaggerated hip flexion which appears more crouched and
less fluid than typical human walking.

One likely cause of these differences is the control force genera-
tion mechanism. Biological control systems output neural excita-
tion signals, which then generate musculotendon forces that lead
to joint torques. The mapping from excitation to torque is highly
complex due to variable moment arms, biarticular muscles, and
the dependence of musculotendon forces on fiber length and con-
traction velocity [Zajac 1989]. On the other hand, state-of-the-art
bipedal locomotion control methods directly output joint torques,
which ignore constraints and energetic costs imposed by muscle
anatomy and physiology. Consequently, to accomplish a motion

task, controllers often employ torque patterns that are inefficient or
even impossible for humans. These biologically implausible torque
patterns diminish the naturalness of the resulting gaits.

The goal of our work is to enhance the realism of locomotion
gaits exhibited by physically-simulated humanoids without depen-
dence on motion capture data. To this end, we augment the joint-
actuated humanoid model with a set of Hill-type musculotendon
units (MTUs). These musculotendon units generate torques for the
most important degrees-of-freedom (DOFs) during locomotion—
the sagittal plane hip, knee, and ankle DOFs. To actuate these mus-
cles, we define biologically-motivated control functions that map
the current state of the body (joint angles, muscle fiber lengths,
etc.) to excitation signals. The parameters of these functions are
optimized to yield gaits that move the character forward without
falling down.

While many sets of parameters are capable of achieving this task,
the quality of the resulting motion varies significantly among them.
To produce gaits that have a high degree of realism, we employ
an objective based on minimization of metabolic energy expendi-
ture, thus choosing the most effortless gait that achieves the task
[Alexander 2003]. In living humans and animals, metabolic en-
ergy expenditure can be estimated by oxygen consumption. In
contrast, it is less clear how metabolic energy expenditure should
be modeled for simulated characters. A common substitute is the
sum of squared joint torques [Schultz and Mombaur 2010], which
does not account for the different effort levels required to gen-
erate torques in different joints, directions, and body configura-
tions. More nuanced objectives can be learned from inverse op-
timization [Liu et al. 2005], but are dependent on training data.
Our use of biologically-based actuators enables the estimation of
metabolic energy expenditure based on the internal state of the
MTUs [Anderson 1999]. The result is a locomotion control opti-
mization procedure that minimizes a physiologically-based objec-
tive within a parameter space restricted to biologically plausible
torque patterns.

We demonstrate the presented approach by optimizing locomotion
controllers for a wide range of speeds. For quantitative evaluation,
we collected experimental ground truth data from 20 human sub-
jects walking and running at eight speeds on an instrumented tread-
mill. Much like human locomotion, our controllers utilize signif-
icant ankle torque and generate smooth torque trajectories. The
resulting gaits match human ground truth to a greater extent than
state-of-the-art walking controllers that do not rely on motion cap-
ture data. Furthermore, we show that by simply changing the initial-
ization and target velocity, the same optimization procedure leads
to running controllers.

2 Related Work

Animation researchers have been interested in the control of
locomotion for 3D humanoid characters for almost 20 years
[Hodgins et al. 1995; Laszlo et al. 1996; Faloutsos et al. 2001].
One important recent contribution is SIMBICON [Yin et al. 2007],
a remarkably robust 3D humanoid locomotion controller based
on the balance control of Raibert and Hodgins [1991]. A num-
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ber of projects have since focused on expanding the controller
repertoire for simulated bipeds [Jain et al. 2009; Coros et al. 2010;
de Lasa et al. 2010] and on locomotion in complex environments
[Mordatch et al. 2010; Wu and Popović 2010].

At the same time, efforts have been made to make the synthesized
motions more human-like, or “natural.” As discussed by Wang et
al. [2009], the original SIMBICON-style controllers tend to pro-
duce gaits lacking hip extension with a constant foot orientation.
Knee angles lack flexion during swing, but lack extension at heel-
strike. More recent controllers improve motions by designing bet-
ter target trajectories in joint or feature space [Coros et al. 2009;
Coros et al. 2010; de Lasa et al. 2010]. While more human-like an-
kle motions have been produced, differences in the hip and knee
angles persist (Figure 6a). Perhaps more importantly, controllers re-
lying on hand-tuned trajectories cannot be easily used to investigate
how the control strategies change with respect to new constraints.
For example, how would the character’s motion style change given
a physical disability? Can we synthesize appropriate gaits for older
or younger characters?

Impressive results have also been achieved by controllers
based on tracking motion capture data [da Silva et al. 2008;
Muico et al. 2009; Kwon and Hodgins 2010; Lee et al. 2010;
Ye and Liu 2010]. However, as with methods that tune joint
trajectories or controller parameters by hand, motion capture
driven controllers have a limited ability to predict changes in gait.

Alternatively, de novo controller optimization has been used
to capture features of human walking [Wang et al. 2009;
Wang et al. 2010]. While these methods were shown to pro-
duce gaits for a variety of characters and environmental conditions,
they do not employ realistic effort measures or biologically-
plausible control torques. The resulting torque patterns are highly
unnatural (Figure 6b), leading to artifacts such as excessive plan-
tarflexion and sharp changes in kinematics (Figure 6a). In contrast,
our approach is to actuate key DOFs using Hill-type MTUs and
to measure effort based on metabolic energy expenditure. We
demonstrate significantly more human-like kinematic and torque
trajectories and show that the same control parameterization and
effort objective produce both walking and running.

While locomotion controllers discussed above all operate on
joint-actuated models, musculoskeletal models have also been
investigated in computer graphics. Such models have been used in
facial animation [Waters 1987; Lee et al. 1995; Sifakis et al. 2005],
simulation of the human hand [Sueda et al. 2008], neck
[Lee and Terzopoulos 2006], torso [Zordan et al. 2006], and
the complete upper body [Lee et al. 2009]. Hase et al. [2003]
optimize a CPG-based (central pattern generator) locomotion
controller [Taga 1995] for 3D musculoskeletal models without
tendon or activation dynamics, but their results were not compared
to human kinematic and dynamic gait patterns. Moreover, full
musculoskeletal models are significantly more difficult to construct
than joint-actuated models. Our work demonstrates that measur-
able increase in locomotion realism can be produced by employing
musculotendon actuators for a small subset of the body DOFs.

In the biomechanics literature, abstract planar models have been
used to study high-level principles of human locomotion. For
example, energy minimization has been suggested as the crite-
rion for humans in determining step length given walking speed
[Kuo 2001], as well as in selecting between walking and run-
ning [Srinivasan and Ruina 2006]. The spring-loaded inverted pen-
dulum (SLIP) model [Blickhan 1989] has been used as a basis
for predicting center-of-mass (COM) movements of human run-
ners [Full and Koditschek 1999]. However, in the absence of knee
joints, these models cannot be used to simulate accurate gait pat-
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Figure 1: Humanoid model. (a) Sixteen Hill-type MTUs, shown
in red, generate torques for the hips, knees, and ankles. Note that
the back joint is not rendered for aesthetic reasons. (b) Five uniar-
ticular muscles in each leg produce flexion or extension torques at
single joints. (c) Three biarticular muscles in each leg generate
torques at pairs of joints. See Section 3 for details.

terns. Using a 2D model with knees and musculotendon actua-
tors, Geyer and Herr [2010] showed that patterns of human walk-
ing can be generated by a set of simple control laws motivated by
muscle reflexes, which inspired our work. We show how their
basic ideas can be embedded in a 3D humanoid model and ex-
tended to running. Similar 2D models have been used for gait
prediction [Ackermann and van den Bogert 2010], and to generate
human-like responses to disturbances [Murai and Yamane 2011].

Simulation studies on detailed 3D musculoskeletal models
have been employed to understand muscle functions dur-
ing locomotion tasks [Anderson and Pandy 2001; Liu et al. 2008;
Hamner et al. 2010]. In particular, Anderson and Pandy [2001]
showed that human-like lower body motor patterns can be found
by minimizing metabolic energy expenditure per distance travelled,
and we adopt their proposed model of metabolic energy in our
work. However, these biomechanical simulations only recovered
muscle activation trajectories, and did not produce locomotion con-
trollers that can function beyond the duration of input data.

Finally, our work is complementary of the recent work of Jain and
Liu [2011], who showed that simulating soft tissue deformation at
contact sites could lead to more robust and realistic character mo-
tion. We demonstrate how musculotendon actuators, biologically-
motivated control laws, and a more realistic effort term can be used
to produce more human-like locomotion gaits.

3 Humanoid Model

Our 3D humanoid model has 30 joint DOFs and mass distributions
approximating a 180 cm, 70 kg male [Wang et al. 2010]. From the
original model, we adjust the lower-body joint locations and mass
distributions to better match human data [Hamner et al. 2010]. We
use cylinders to approximate the heel and ball of the foot, which
allows for some amount of foot rolling after heel-strike. Unlike
previous work, where the model is actuated by setting torques to all
joints, we use a model that is partially actuated by Hill-type MTUs
(Figure 1). Specifically, control torques for the hip, knee, and
ankle joint DOFs in the sagittal plane—key DOFs for gait analy-
sis [Perry and Burnfield 2010]—are exclusively generated by eight
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Figure 2: Relationship between musculoskeletal model, controller,
and simulator. The controller takes as input the simulation state
(body position, joint configuration, contact state, etc.), denoted by
s and outputs neural excitation signals (u) and torques (τ̃ ). Excita-
tion signals are converted to muscle activations (a), which are then
converted to torques τ for the hip, knee, and ankle sagittal DOFs.
The remaining DOFs are directly actuated by τ̃ . The excitation to
torque mapping is a function of the contractile element kinematics
(lCE, vCE) and hip, knee, and ankle joint configuration (θ).

MTUs in each leg. In addition, soft joint limit torques as defined by
Geyer and Herr [2010] are applied to these DOFs.

Figure 1b depicts locations of the uniarticular MTUs and the joints
they actuate. The hip joint is extended by the gluteal muscles
(GLU) and flexed by the hip flexor muscles (HFL), while the knee
joint is extended by the vasti (VAS). The tibialis anterior (TA) and
the soleus (SOL) generate dorsiflexion and plantarflexion torques
at the ankle, respectively. The biarticular MTUs (Figure 1c) sup-
ply torques to two joints simultaneously. We include the ham-
string (HAM), which extends the hip and flexes the knee, the rectus
femoris (RF), which flexes the hip and extends the knee, and the
gastrocnemius (GAS), which flexes the knee and plantarflexes the
ankle. The choice of muscles is based on the planar model proposed
by Geyer and Herr [2010]. We have added the rectus femoris since
we found that it improves the walking knee flexion profile during
swing when compared to human data.

3.1 Musculotendon Model

We employ a Hill-type model [Zajac 1989], where each MTU con-
sists of three elements: contractile, parallel-elastic, and serial-
elastic. Conceptually, the contractile element (CE) models mus-
cle fibers that can actively generate force (F CE) depending on the
current activation level (a). The parallel-elastic element (PE) mod-
els passive forces (F PE) generated by the muscle fibers, while the
serial-elastic element (SE) models the tendon.

In particular, given the length and velocity of CE (lCE, vCE), as well
as the current muscle activation level (a), we can compute the MTU
force (FMTU) as follows:

FMTU = F CE + F PE,

F CE = aF 0fl(l̃
CE)fv(ṽ

CE),

where l̃CE = lCE/lopt and ṽCE = vCE/lopt. F 0 and lopt are muscle-
specific maximum isometric force and optimal fiber length param-
eters. fl and fv are the force-length and force-velocity curves (Fig-
ure 3). The computation of F PE and the analytic forms of fl and fv
are described in the supplemental material.
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Figure 3: Muscle force-length and force-velocity curves used in our
model. The force generating capacity of a muscle is dependent on
the length of muscle fibers (force-length relationship) and the veloc-
ity of muscle fibers (force-velocity relationship). The force-length
curve shows that muscles can generate force more efficiently near
lopt, and the force-velocity curve shows that muscles lose ability to
generate force as the magnitude of contraction velocity increases.

Intuitively, fl models the fact that muscles can generate force more
efficiently near lopt, and fv captures how the muscle loses its ability
to generate force as the contraction velocity increases [Zajac 1989].
As to be discussed in Section 4.1, the nonlinearity introduced by
these relations is crucial for how simple control laws for muscle
excitation can lead to complex force and torque trajectories.

Figure 2 illustrates how the musculotendon model interacts with
the controller and the simulator. The controller outputs neural ex-
citation signals (u), which are converted to muscle activations (a).
The conversion does not occur instantaneously and is referred to
as activation dynamics. The dynamics is modeled by a first-order
differential equation [Zajac 1989; Geyer et al. 2003], which can be
integrated by at+1 = 100h(ut − at) + at, where h is the stepsize
(1/2400 s) and at and ut are the muscle activation and excitation
values at the t-th timestep. A step-response graph for the activa-
tion dynamics, as well as details on the lCE and vCE computations
(contraction dynamics) are given in the supplemental material.

The joint torques generated by a given MTU is a function of
the current body configuration. A simple variable moment arm
model is assumed for MTUs attached to the knee or ankle: τ =
rj cos(θ−ϕM

j )FMTU, where θ is the current knee or ankle angle in
the sagittal plane, and rj is the maximum MTU-joint moment arm,

which occurs at the joint angle ϕM
j . MTUs attached to the hip are

assumed to have a constant moment arm: τ = rjF
MTU.

The total lower extremity joint torques in the sagittal plane are ob-
tained by summing over contributions from all relevant muscles:

τ hip = τGLU + τ hip

HAM − τHFL − τ hip

RF ,

τ knee = τ knee
RF + τVAS − τ knee

HAM − τ knee
GAS ,

τ ankle = τ knee
GAS + τSOL − τTA.

4 Control Parameterization

The main part of our control algorithm consists of functions that de-
termine muscle excitation values for each of the lower body MTUs,
which actuate the hip, knee, and ankle DOFs in the sagittal plane.
For the upper body and the remaining DOFs in the lower body, we
rely on a pose-graph controller [Yin et al. 2007].

Optimizing Locomotion Controllers Using Biologically-Based Actuators and Controllers        •        25:3
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Figure 4: High-level control states for each leg. The stance and
swing phases are triggered by ground contact conditions. The
signed horizontal distance between the COM and the ankle (d) nor-

malized by leg length (d̃) is compared against two threshold param-

eters (d̃SI, d̃SP) to start swing initiation (SI) and stance preparation
(SP), respectively. SI can also be started when the opposing leg
makes ground contact (double stance).

4.1 Muscle Control

Our control laws for the actuators are based on the muscle-reflex
controller introduced by Geyer and Herr [2010]. We will describe
the basic formulation and our modifications in this section. Two
different sets of control laws apply for each muscle, depending on
whether the leg is in stance or swing phase (i.e., foot is on the
ground or not). We further define a swing initiation state within the
stance phase, and a stance preparation state within the swing phase,
where control laws for a subset of MTUs are modified (Figure 4).

The control laws map time-delayed features of the body to mus-
cle excitation signals. The time-delay (∆t) models the time for
neural signal propagation, set to 5 ms for MTUs connected to
the hip, 20 ms for MTUs connected to the ankle, 10 ms for the
VAS and ground contact [Geyer and Herr 2010]. Body features
include MTU force, fiber length, joint angle, and segment orien-
tation. Depending on the input feature, three different mappings
are defined: positive force feedback, positive length feedback, and
muscle-driven proportional derivative (PD) control. These map-
pings serve as building blocks for the control laws, and we discuss
each in turn in this section.

Positive force feedback. GivenMTUm, the positive force feed-
back law is defined as

uF
m = GmF̃MTU

m (t−∆tm),

where F̃MTU
m (t−∆tm) is the MTU force normalized by F 0

m with a
time-delay of∆tm. The only free parameter is a positive gain con-

stantGm, which is different for each MTU. Note that F̃MTU
m cannot

increase indefinitely since the muscle’s force generation capacity
depends nonlinearly on the length and contraction velocity of the

muscle fiber. As F̃MTU
m starts to decrease due to muscle physiol-

ogy, uF
m starts to decrease as well. The force feedback is the main

source of activation to the SOL, GAS, and VAS muscles during the
stance phase. Figure 5 shows the activation and fiber length of GAS
during the stance phase. We can see that uF

GAS produces a positive
feedback during mid-stance, when the muscle activation does not
produce a significant change in muscle fiber length, as the foot is
planted on the ground. As the heel loses ground contact in late
stance, the same muscle activation rapidly shortens the fiber length,
which reduces force output and the activation through uF

GAS.
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Figure 5: Effects of muscle physiology on activation illustrated
by GAS activation and normalized fiber length during the stance
phase. Note the nonlinearity of the activation curve generated by
the linear force feedback control law (Section 4.1). While the foot
is flat on the ground during mid-stance, GAS activation does not
significantly change the fiber length, and force feedback leads to an
activation build-up. As heel loses contact during late-stance, the
fiber rapidly shortens and reduces fl and fv (Figure 3). As the gen-
erated force decreases, the same force feedback leads to a drop-off
in activation.

Positive length feedback. Positive length feedback is defined as

uL
m =

{

Gm

(

l̃CEm (t−∆tm)−Hm

)}

+

,

where l̃CEm (t − ∆tm) is the length of the muscle fiber normalized
by the loptm with a time-delay of∆tm. Gm andHm are free positive
parameters and {}± means only positive or negative values (0 oth-
erwise). The positive length feedback effectively models a stretch
reflex, which activates the muscle when the fiber is stretched be-
yond a fixed length. uL

m is most useful during the swing phase, as
the TA must be activated to dorsiflex so that toe-stubbing can be
avoided. In addition, the HFL relies on length feedback to generate
hip flexion torque during early swing, especially during running.

Muscle-driven PD control. We also define a muscle-driven PD
control law with respect to an angular feature θ as

uθ
m =

∣

∣

∣

∣

{

Km(θ(t−∆tm)− θm) +Dmθ̇(t−∆tm)
}

±

∣

∣

∣

∣

,

where Km, Dm, θm are free parameters of the PD-controller. The
braces sign is positive if torque generated by m is in the opposing
direction of θ—e.g., if m is the hip extensor and θ is the hip flex-
ion angle—and negative otherwise. Much like the standard torque-
based PD-controller, the muscle-driven PD control aims to adjust θ
towards the target angle θm while damping its velocity. However,
unlike the standard PD-controller, muscles can only activate after a
time-delay and each muscle can only generate forces to rotate the
angular DOF in one direction. The PD-control laws are employed
by the hip muscles during the stance phase to maintain the global
upper body orientation, as well as during stance preparation to pre-
pare for ground contact.

4.2 Stance Phase

Each muscle has an initial constant excitation, or pre-stimulation
value pm. These values are initialized close to zero, but are then
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optimized. The SOL and GAS both rely on positive force feedback
and are the main sources of torque during walking. The TA ensures
foot clearance during swing using a length feedback (uL

TA), but the
activation is suppressed during stance in proportion to the current
force generated from SOL. The suppression allows the generated
TA activation patterns to better match human data during locomo-
tion. The force feedback on the VAS creates a strong knee extension
torque following ground contact, but excitation is suppressed when
the knee flexion angle (θk) is extended below an offset (θoffk ) with an

extension velocity (θ̇k < 0). The suppression prevents hyperexten-
sion of the knee during mid-stance. Using muscle-driven PD con-
trol laws, the HAM, GLU, and HFL are responsible for maintaining
the global orientation of the upper body (Θ), defined as the vector
between the COM of the upper body and the COM of the pelvis pro-
jected onto the sagittal plane. During double stance, these control
laws are only active for the leading leg, denoted as

{

uΘ
m

}

lead
.

Specifically, control laws during the stance phase are as follows:

uSOL = pSOL + uF
SOL,

uTA = pTA + uL
TA − uF

SOL,

uGAS = pGAS + uF
GAS,

uVAS = pVAS + uF
VAS +

{

kθ(θk(t−∆tVAS)− θoffk )
}

−,θ̇k<0

,

uHAM = pHAM + {uΘ
HAM}lead,

uRF = pRF,

uGLU = pGLU + {uΘ
GLU}lead,

uHFL = pHFL + {uΘ
HFL}lead.

Towards the end of the stance phase, the controller enters into the
swing initiation, which begins when either the signed horizontal
distance between the COM and the ankle normalized by leg length

exceeds a constant threshold d̃ > d̃SI or if the opposing leg has
entered into stance phase (double stance). During swing initiation,
constant excitation values between 0 and 1 (set during optimization)
are added and subtracted to the VAS, RF, GLU, and HFL:

uVAS = uVAS − sVAS,

uRF = uRF + sRF,

uGLU = uGLU − sGLU,

uHFL = uHFL + sHFL.

The combination of HFL and GLU excitations creates a large hip
flexion torque, while the VAS and RF excitations effectively allow
the optimizer to adjust the initial knee swing angle and velocity.

Two main differences between our stance phase control laws com-
pared to Geyer and Herr [2010] lie in how the swing initiation state
functions. First, for running we found it necessary to enter into

swing initiation using the d̃ > d̃SI condition, rather than just wait
for double stance. Second, we found it unnecessary to modulate the
muscle-driven PD-control laws in the hip by ground reaction forces.
Instead, the responsibility to maintain upper body orientation is al-
ways assigned to the lead leg.

4.3 Swing Phase

Much like in the stance phase, each muscle has an initial constant
excitation value (qm). The leg motion relies significantly on pas-
sive dynamics during the swing phase [Collins et al. 2005], as most
muscles are only excited at low levels. The main exceptions are
the TA, which maintains the length feedback (uL

TA) to avoid toe-
stubbing, and the HAM, which is activated at late swing phase to

prevent the knee from being overextended before landing. The HFL
introduces a hip flexion torque through a length feedback, which is
suppressed when the HAM is stretched in during late swing. The
amount of excitation in the HFL also depends on the value of upper
body lean at the beginning of the swing phase (Θlto): the further
the upper body leans forward compared to the reference lean an-
gle (Θd), the more excitation is supplied from the HFL during the
swing phase. Note that Θd is the same as the target angle in uΘ

HFL.

Non-constant control laws during the swing phase are as follows:

uTA = qTA + uL
TA,

uHAM = qHAM + uF
HAM,

uGLU = qGLU + uF
GLU,

uHFL = qHFL + uL
HFL − uL

HAM + kΘ(Θlto −Θd).

The controller enters into the stance preparation when d̃ < d̃SP,
where the swing leg enters into a PD-control mode. The GLU, HFL,
and VAS work to guide the hip and knee joints toward a desired
pose to prepare for ground contact:

uVAS = qVAS + u
θk
VAS,

uGLU = qGLU + u
θh
GLU,

uHFL = qHFL + uθh
HFL.

A single desired hip target angle (θh) is adjusted according to the
SIMBICON balance feedback law [Yin et al. 2007] and is shared
by both the GLU and HFL. We found the addition of the stance
preparation state to be important for discovering running gaits. The
balance feedback law allows robust control strategies to be found in
difficult environments (e.g., being pushed by random forces).

4.4 Out-of-Plane and Upperbody Control

The rest of the DOFs are controlled using standard joint-space PD-
controllers with state-dependent parameters. Following Wang et
al. [2010], the target features for the ankle and hip joints in the coro-
nal plane are the global foot and pelvis orientations, respectively.
The coronal swing hip target angles follow the same feedback law
as θh. Additionally, we set the toe joint to be a spring with spring
constant of 30 Nm/rad, target angle 0, and no damping. Unlike in
previous work, where a gait cycle is broken down into four states,
only two are needed (triggered by left/right foot-strike) since DOFs
with the most complex activities are actuated by muscles.

Our upper body control also largely follows Wang et al. [2010],
with the exception that the target feature of our back joint in the
coronal plane is the global orientation of the torso instead of the
local joint angle between the torso and the pelvis. This global tar-
get allows our model to better keep the head upright during lo-
comotion. We fix the spring and damper constants for all arm
joints to 30 Nm/rad and 3 Nms/rad, respectively, with target
angles set to 0. We found that more human-like arm swing can
be generated by relating the elbow and shoulder target angles as
θls = αarm

(

θlh − θrh
)

+ βθde and φl
s = γθde , where θls and φl

s

are the shoulder angles in the sagittal and transverse planes, respec-
tively; θlh and θrh are the current left and right sagittal hip angles;
θde is the desired elbow angle, β, γ are constants chosen based on
human motion data (see supplemental material), and αarm is a scale
constant that determines the magnitude of the arm swing. This for-
mulation captures the tendency to rotate the shoulder backwards
and inwards while bending the elbow. The scale constant and the
desired elbow angle are among the parameters set by optimization,
as described in the next section.
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5 Optimization

The control algorithm specified in Section 4 has a large number of
parameters, which we set by optimization [Wang et al. 2010]. More
specifically, each of the uF

m, uL
m, and uθ

m laws have one, two, and
three parameters, respectively. There are 56 parameters in total (30
stance, 26 swing) for the MTU control laws. For the upper body
and the non-sagittal DOFs in the lower body, we optimize the PD-
control parameters (spring-damper constants, target angle, balance
feedback) for all joints except for arms, where only a target el-
bow angle and a swing scale parameter are optimized (Section 4.4).
When combined with 33 free parameters describing the initial state
of the simulation, 124 parameters (w) fully define a simulated mo-
tion {s1 . . . sT } over T timesteps. We optimize control parameters
and the initial state using Covariance Matrix Adaptation (CMA)
[Hansen 2006], with stepsize σ = 0.005 and 50 samples per itera-
tion.

The optimization aims to maximize the following return function:

R (w) =

(

T
∑

t=1

r(st)

)

− weJeffort.

Here r is a scalar reward function of the current state st, Jeffort mea-
sures the effort of the synthesized motion, and we is set to 0.004
divided by the mass of the model, motivated by Wang et al. [2010].

The reward is defined as the negative sum of a number of task
terms (i.e., r(st) = −

∑

i Ki(st)), which can be thought of as
high-priority goals that the controller must satisfy while minimiz-
ing effort. In practice, these terms are weighed more heavily than
the effort term. The tasks include moving the COM forward at a
target velocity while not falling down for 10 seconds, and main-
taining head stability and upper body orientation. The task terms
are based on Wang et al. [2010] and are defined in the supplemen-
tal material. Note that unlike in previous work, we did not need to
include human-like speed to step-length ratio and minimal angular
momentum about the COM as task terms.

5.1 Effort Term

The main contribution to our effort measurement is the total rate
of metabolic energy expenditure (Ė) over all MTUs. To quantify

Ė, we implement a model described by Anderson [1999], which
is later expanded by Bhargava et al. [2004]. The rate of metabolic
energy expenditure for a given muscle can be modeled as the sum
of heat released and mechanical work done by the muscle:

Ė = Ȧ+ Ṁ + Ṡ + Ẇ ,

where Ȧ is the muscle activation heat rate, Ṁ is the muscle mainte-
nance heat rate, Ṡ is the muscle shortening heat rate, and Ẇ is the
positive mechanical work rate.

The muscle activation heat rate models the rate of energy that is
converted to heat by a muscle given a certain level of activation,
and is a function of both the mass of the muscle and the excitation
signal. The maintenance heat rate similarly models the heat rate for
the muscle to maintain contraction at a certain level, and depends
additionally on the current fiber length. Specifically,

Ȧ = mass · fA(u) and Ṁ = mass · g(l̃CE)fM (a),

where mass is the muscle mass and l̃CE is the normalized muscle
fiber length. The forms of fA, fM , and g are described in the sup-
plemental material. The dependence on muscle mass captures the
fact that while larger muscles are generally capable of generating
more force, they are also more costly to use.

The muscle shortening heat rate models the heat generated by the
shortening of muscle fibers and is proportional to the current force
generated by the muscle and the shortening velocity:

Ṡ = 0.25FMTU{−vCE}+.

Finally, the positive mechanical work rate is the mechanical power
produced by the active element of the MTU during contraction:

Ẇ = F CE{−vCE}+.

Note that Ṡ is close to one-quarter of Ẇ . The difference is that
FMTU is the net force (both active and passive) produced in the
MTU, while F CE is only the active force.

Let Ėm,t denote the rate of metabolic energy expenditure computed
for MTU m at timestep t. We define the average rate of metabolic
expenditure due to MTUs as

JM = Ḃ +
1

T

T
∑

t=1

∑

m∈M

Ėm,t,

where Ḃ is the basal metabolic energy rate, set to 1.51 times body
mass [Anderson 1999]. M is the set of all sixteen muscles defined
in the model.

Additionally, torques generated by the PD-controllers in the rest
of the DOFs are penalized by the average sum of torque squared
objective:

JR =
1

T

T
∑

t=1

∑

j∈Qr

τ2
j,t,

where Qr is the set of all joint DOFs except for the sagittal hips,
knees, and ankles. We similarly define JL to penalize the average
sum of squared soft joint limit torques for the hip, knee, and ankle
joints, specified in Geyer and Herr [2010].

The overall effort of a particular motion is defined as
Jeffort = wMJM + wRJR + wLJL, a weighted sum between the
terms. We empirically set wM = 100, wR = 1, and wL = 0.5 for
all experiments.

6 Experiments

The simulations were implemented using Open Dynamics Engine
(ODE) with a frequency of 2400 Hz. We simulate for T = 24000
timesteps (10 s) in each evaluation. The optimization is terminated
after 3000 iterations, which takes approximately 10 hours using 50
compute cores on a cluster of Dell PowerEdge 1950 servers. An op-
timized controller can be simulated at interactive rates using stan-
dard hardware. We initialize walking parameters of the MTU con-
trol laws based on hand-tuned values for 2D walking from Geyer
and Herr [2010]. For running, we double the initial gain parame-
ters of GAS and SOL, and initialize θde to set the elbow in a bent
position. The precise initialization values are provided in the sup-
plemental material.

6.1 Ground Truth Data

Human joint moment (torque) curves during locomotion can
be computed from motion capture and ground reaction force
data. In this work we are particularly interested in com-
paring our results to the mean and standard deviation curves
for the sagittal hip, knee, and ankle joints for multiple sub-
jects over multiple walking and running speeds. While such
data for walking is readily available [Perry and Burnfield 2010],
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Figure 6: Comparison between walking controllers with speeds near 1.0 m/s. The shaded areas represent one standard deviation of the
ground truth human data at 1.0m/s. The hand-tuned SIMBICON-style controller [Coros et al. 2009] matches joint angle data relatively well,
but lacks hip extension and relies primarily on hip torques. The robust feature-based controller [Mordatch et al. 2010] walks in a crouch and
uses large knee torques. A controller optimized for human-like torque distributions [Wang et al. 2010] fails to generate human-like joint
angles and torques. Our result (swalk in Table 1), optimized with a target velocity of 1.0m/s, best matches human data.

only scattered data are available for running [Novacheck 1998;
Yokozawa et al. 2007; Hamner et al. 2010]. Instead, we ac-
quired our own ground truth data using an instrumented
treadmill with 20 subjects. This data is available from
http://graphics.stanford.edu/projects/bio-locomotion.

We acquired kinematics and dynamics data for a range of walking
and running speeds (from 1.0 m/s to 5.0 m/s). The supplemental
material includes angle and moment plots for all speeds, as well
as details on our data collection. Comparing the mean curves for
walking speeds from 1.0m/s to 1.75m/s, we found that the range
of hip angles in our subjects during walking increased by approx-
imately 10◦, while the location of maximum ankle plantarflexion
shifted slightly earlier in the gait cycle. More pronounced differ-
ences are present between running data at different speeds. The hip
angle range and maximum knee flexion both increased by 30◦as
running speed increased from 2.0 m/s to 5.0 m/s, while locations
of both the maximum hip extension and ankle plantarflexion shifted
earlier by 5% and 10%, respectively. Both the hip and ankle torque
outputs increased with speed, though the ankle torque curves did
not differ significantly between 4.0m/s and 5.0 m/s.

6.2 Walking Controllers

We first optimized for a normal walking controller (referred to be-
low as nwalk) with a target velocity of 1.25 m/s, which is approx-

imately the human self-selected walking speed. Initializing with
the normal controller, we then optimized for a 1.0 m/s slow walk
controller (swalk) and a 1.5 m/s fast walk controller (fwalk). A
1.75 m/s very fast walk controller (vfwalk) is optimized by initial-
izing from fwalk.

Comparison to ground truth. Supplemental figures indicate
that our kinematic patterns generally agree with data over a range
of speeds and especially at lower speeds. Two main discrepancies
are the timing of knee flexion during stance, and ankle dorsiflexion
before heel-strike. For higher speeds, the maximum knee flexion
angle is lower than human data, and the location of maximum an-
kle plantarflexion occurs earlier in the gait cycle. All angle and
moment curves shown are averaged over multiple cycles. Note that
we found time-delays to be important for generating human-like
motion given our control model. Optimizing without activation dy-
namics and with∆tm = 0 for all MTUs results in a solution where
ankle torques build up too quickly in the stance phase, leading to
shorter step-lengths compared to human data.

Figure 6a shows the hip, knee, and ankle angles of walking
data generated by our 1.0 m/s controller (swalk) compared to
controllers of similar speeds presented by previous contributions
[Coros et al. 2009; Mordatch et al. 2010; Wang et al. 2010], as well
as human data at 1.0 m/s. A major artifact from all of the previ-
ous works is the lack of hip extension during mid-gait, which does
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ref. speed controller hip knee ankle average

1.0 m/s Coros09 1.63 2.04 1.54 1.73
Mordatch10 5.80 8.10 6.36 6.75
Wang10s 4.17 3.71 2.40 3.42
swalk 0.41 1.28 1.41 1.04

1.25 m/s min torque 1.35 1.79 4.32 2.49
min act 1.51 3.20 3.74 2.82
nwalk 0.43 1.79 1.34 1.19

1.5 m/s Wang10f 3.03 3.38 3.46 3.29
fwalk 0.79 2.53 1.28 1.28

1.75 m/s Wang10vf 1.37 2.60 3.32 2.43
vfwalk 1.31 3.19 1.69 2.06

Table 1: Quantitative comparison of walking controllers with hu-
man kinematics data in standard score (average number of stan-
dard deviations away from the mean).

not occur in our result. The feature-based controller of Mordatch et
al. [2010] is robust and flexible, but their basic walking gait shows
an obvious crouch. Our result also exhibits a range of knee motion
more similar to humans compared to previous works. However, all
four controllers show excessive dorsiflexion before heel-strike.

An important advantage of optimization over hand-tuning is the
ability to create controllers based on high-level objectives such as
walking speed. As demonstrated in supplemental material, our con-
trollers generate more human-like gaits compared to optimized con-
trollers from Wang et al. [2010] at faster walking speeds (Wang10f,
Wang10vf ) as well. An obvious artifact of all controllers from
Wang et al. [2010] is the excessive plantarflexion in the early swing
phase, which is not present in our result.1

Examining differences in torque generation, we can see that the
controller presented by Coros et al. [2009] does not employ a
human-like torque distribution between the joints (Figure 6b). In
particular, as was the case in SIMBICON [Yin et al. 2007], the gait
is largely hip-driven, as can be seen by the large hip torques and
small ankle torques compared to human data. In turn, controllers
from Wang et al. [2010] generated larger amounts of ankle torque
by optimizing for a human-like torque ratio, but did not come close
to matching the shapes of human torque data. Note that our work
does not exhibit unnatural torque spikes due to state switching that
are present in the previous works.

Table 1 shows quantitative comparisons between the controllers.
We compute the mean standard score against human data over 100
evenly spaced points on the curves. Note that our results show the
lowest average standard score for all speeds.

Evaluation of objective. We evaluate the metabolic energy ex-
penditure objective described in Section 5 against the simple sum
of squared torques objective, by redefining

JM = 1

T

∑T

t=1

∑

j∈Qs
τ2
j,t,

where Qs is the set of sagittal hip, knee, and ankle DOFs (with
wM = 5). Controllers optimized for each of the two objectives
(nwalk, min torque) are demonstrated in the accompanying video.
For this comparison, we use a target speed of 1.25 m/s, which is
the same as nwalk. The gait resulting from torque minimization
exhibits too much knee flexion during the swing phase and too
much dorsiflexion before heel-strike. Closer examination reveals

1Wang et al. [2009; 2010] provided comparisons against the global thigh

and foot orientation which, unlike the hip and angle ankles, do not capture

the relative orientations of the body links.

that the TA muscle, responsible for dorsiflexion, is highly activated
throughout the gait when only torque is being minimized. Since
the foot is a relatively light link, the actual magnitude of the dor-
siflexion torque is not large even when the TA is fully activated,
therefore it does not incur a large penalty in the torque objective. In
contrast, the metabolic energy objective captures the fact that acti-
vating and maintaining contraction of TA generates significant heat
and should therefore be discouraged. Note that unlike dorsiflexion
torques, large ankle plantarflexion torques can be generated with
relative ease. Simply increasing the penalty on ankle torques does
not account for the effort difference between generating torques in
different directions.

A simple objective that could approximate effort given a muscu-
loskeletal model is the sum of squared muscle activations, which
is commonly used in static optimization—a technique for re-
covering activations given motion capture and force plate data
[Anderson 1999]. However, as demonstrated in the accompanying
video, this objective also does not lead to faithful walking kinemat-
ics. Here we define

JM = 1

T

∑T

t=1

∑

m∈M
a2
m,t,

where M is the set of MTUs, and am,t is the activation level of
MTU m at timestep t (with wM = 60000). In the gait produced
by the controller that minimizes this objective (min act), activa-
tions from the GAS/SOL are significantly lowered, while activa-
tions from VAS are increased. While the total amount of activations
is reduced, the resulting gait walks in a crouch and relies heavily on
the knee.

Table 1 includes average standard score values compared against
human data at 1.25 m/s. Controllers optimized using the torque
and activation objectives both exhibit large errors compared to
nwalk, especially at the ankle joint. While noticeable kinematic dif-
ferences are seen in the gaits produced by different objectives, the
torque curves are smooth due to the muscle model and the control
parameterization.

Changing muscle properties. The plantarflexors (GAS and
SOL) are largely responsible for forward propulsion in normal
walking [Liu et al. 2008]. We found that weakening the GAS and
SOL to a quarter of their original strength, while keeping all other
objectives identical (target speed 1.25m/s), results in a mild crouch
gait characterized by excessive knee flexion (see accompanying
video). Our result suggests that under the condition of weakened
plantarflexors, the mild crouch gait may be metabolically efficient
compared to other gait choices. The crouch gait is commonly found
in cerebral palsy patients, and weakness in the plantarflexors is
one of many factors thought to contribute to the gait abnormality
[Steele et al. 2010].

Knee hyperextension, another common gait abnormality, causes pa-
tients to vault the body forward over the extended stance limb, and
can result from hamstring lengthening surgery in cerebral palsy pa-
tients [Kay et al. 2002]. In the accompanying video, we show that
our optimization indeed results in a mild hyperextension gait after
weakening HAM to a quarter of its original strength, with a mini-
mum knee flexion angle of 2◦. Note that the same angle for the gait
generated by nwalk is 9◦. Another cause of knee hyperextension
is weakened quadriceps, which can be simulated by weakening the
VAS in our model. We found that weakening the VAS to one-tenth
of its original strength leads to a motion similar to quadriceps avoid-
ance gait, which is seen in patients with quadriceps weakness and
anterior cruciate ligament (ACL) deficiency [Timoney et al. 1993].
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Figure 7: Comparison of running. Our result is optimized with a target velocity of 4.0 m/s. The shaded regions represent one standard
deviation of the human running data at 4.0m/s.

6.3 Running Controllers

Our controller architecture and objective function is not limited or
specific to walking alone. By simply changing the target veloc-
ity and initialization (changing the initial velocity from 1.3 m/s
to 3.05 m/s, doubling the initial force feedback gains for GAS
and SOL, and bending the elbow), the same procedure yields run-
ning controllers, without any modifications to the control parame-
terization. In contrast, previous optimization-based control synthe-
sis methods required including torque ratios specific to walking as
part of the objective [Wang et al. 2009] or adding spring elements
for running [Wu and Popović 2010]. Our unified approach to both
walking and running is consistent with the view that humans se-
lect between walking and running by minimizing energy at different
speeds [Srinivasan and Ruina 2006].

We compare running motions generated by our controller at
4.0 m/s with human running data in Figure 7. Our running kine-
matic results do not match human data as well as walking, though
the basic features of the curves are still present. A main discrep-
ancy is that our hip and knee joints both reach maximum extension
earlier than human running data. Similar to our walking results, our
knee joint flexes less during the stance phase compared to humans.
Our maximum knee flexion is also lower than human data.

Figure 7b reveals possible causes for the kinematic differences. Our
knee extension torque reaches maximum earlier than human data,
which can cause the knee to extend too quickly during the stance
phase. On the other hand, our plantarflexion torques have a lower
peak than human data, resulting in a strategy that relies on the knees

more than the ankles. In the supplemental material and the video,
we include results for running at speeds ranging from 3.0 m/s to
5.0 m/s. The faster running results are optimized sequentially in
0.5 m/s increments (e.g., 4.0 m/s initialized from 3.5 m/s). As
the target velocity increases, finding a satisfactory local minimum
appears more difficult. We use 100 samples per iteration and a
0.25 m/s optimization increment for speeds over 4.0m/s.

6.4 Robustness

In this work, we have chosen to focus on reproducing human-
like kinematics and torque trajectories. Likely due to our mod-
eling of human-like torque generation and activation delays, our
controllers cannot tolerate nearly as much external force as re-
cently developed controllers for purely joint-actuated characters
[Mordatch et al. 2010; Wang et al. 2010]. However, we can still
follow Wang et al. [2010] and optimize explicitly for controllers
that can deal with external forces. In particular, we optimized con-
trollers that can tolerate 100 N, 0.4 s pushes to the torso. These
controllers chose to walk in a stiff crouch gait, with lowered COM
and a constantly dorsiflexed ankle to ensure foot clearance (see ac-
companying video). Note that 100N is approximately the weight of
a 10 kg object, a significant push to a human. Comparatively, the
corresponding 100 N controller presented by Wang et al. [2010],
who did not model biological torque generation constraints, did not
employ a gait that is significantly different from the undisturbed
baseline controller. We also optimized for a 4.0 m/s running con-
troller tolerant of 50 N, 0.4 s pushes, as shown in the video.
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7 Discussion

We have presented a biologically-motivated control parameteriza-
tion that can be used to automatically generate 3D human-like walk-
ing and running controllers of different speeds. Controllers are op-
timized to satisfy a set of high-level task terms while minimizing
an effort term based on modeling the rate of metabolic energy ex-
penditure. Notably, walking and running emerge from the same
optimization process simply by changing the target velocity and
initialization. Through comparisons to kinematic and torque data
of human walking, we show that our results adopt a human-like
torque generation strategy while producing kinematic data signif-
icantly closer to humans than previous work. Our work demon-
strates the importance of modeling constraints on torque generation
due to muscle physiology, both in restricting the space of possible
torque trajectories and in providing a realistic model of effort.

We chose to focus on generating human-like locomotion in a
straight line and on flat ground. A natural extension is to investigate
whether our control parameterization and effort term can be com-
bined with the popular task-space controllers [Coros et al. 2010;
de Lasa et al. 2010; Wu and Popović 2010] and higher-level plan-
ning [Coros et al. 2009; Mordatch et al. 2010] to create human-
like motions on uneven terrains [Wu and Popović 2010] or obstacle
courses [Mordatch et al. 2010; Ye and Liu 2010]—scenarios that
have only been addressed using purely joint-actuated characters.

Finally, an exciting area for future work is to automatically synthe-
size locomotion controllers for more detailed, fully muscle-actuated
human models [Weinstein et al. 2008; Lee et al. 2009]. As we have
touched on in Section 6.2, our approach can be used to develop pre-
dictive biomechanical models to investigate the effects of muscle
and control properties on gait. However, more scientific valida-
tion of our simulation results is needed before we can conclude
that our results apply to real humans. One clear aspect for im-
provement is to adopt a more physically-accurate simulation en-
gine [Sherman et al. 2011], as ODE “emphasizes speed and stabil-
ity over physical accuracy” [Smith 2006]. More accurate simula-
tions and detailed models present additional computational chal-
lenges both in simulation speed and in parameter optimization, but
are crucial for potential scientific and medical applications.
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WU, J.-C., AND POPOVIĆ, Z. 2010. Terrain-adaptive bipedal lo-
comotion control. ACM Transactions on Graphics 29, 4.

YE, Y., AND LIU, C. K. 2010. Optimal feedback control for
character animation using an abstract model. ACM Transactions
on Graphics 29, 4.

YIN, K., LOKEN, K., AND VAN DE PANNE, M. 2007. SIMBI-
CON: Simple biped locomotion control. ACM Transactions on
Graphics 26, 3.

YOKOZAWA, T., FUJII, N., AND AE, M. 2007. Muscle activities
of the lower limb during level and uphill running. Journal of
Biomechanics 40, 15, 3467–3475.

ZAJAC, F. E. 1989. Muscle and tendon: Properties, models, scal-
ing, and application to biomechanics and motor control. Critical
Reviews in Biomedical Engineering 17, 4, 359–411.

ZORDAN, V. B., CELLY, B., CHIU, B., AND DILORENZO, P. C.
2006. Breathe easy: Model and control of human respiration for
computer animation. Graphical Models 68, 2, 113–132.

Optimizing Locomotion Controllers Using Biologically-Based Actuators and Controllers        •        25:11

ACM Transactions on Graphics, Vol. 31, No. 4, Article 25, Publication Date: July 2012




